

Mobile 3D Content From Capture to Consumptions

Ahmet Kondoz

I-Lab: Multimedia Communication Research University of Surrey, UK. Email: A.Kondoz@surrey.ac.uk

SURREY Content Stages

3D Content Capturing

3D Content Processing

- Audio Visual coding to
 - keep the bit rate as low as possible and
 - be compatible with all possible scenarios
- Processing to
 - maintain the best audio/visual quality

- H.264/AVC is the most popular codec
- 17 profiles for different applications
 - Each profile may have a "level" defining additional options such as resolution, bit rate etc.
- Annex G Scalable Video Coding
- Annex H Multi-view Video Coding
- Bit rates of 64kb/s ->300MB/s

UNIVERSITY OF SCALABLE VS. Multiple Description Video Coding

SURREY MDC Performance

SVC-DSUS (down sampling up sampling) SMDC scalable MDC motion share

1000 1500 2000 2500 3000 3500 4000

3D SMDC

SVC DSUS MDC

Bitrate (Kbits/s)

Prof. Ahmet Kondoz

27 25

0

500

SVC DSUS

SVC_DSUS_Motion

3D SVC @ 3% PLR

3D SMDC @ 3% PLR

SURREY Edge Adaptive Re-sampling for Depth Frames

- Edge aware downsampling allows reduction in data size, while maintaining high frequency details.
- Edge aware upsampling scheme after decoding allows the conservation and better reconstruction of critical object boundaries.

• Objective is to reduce depth map coding overhead.

Edge Adaptive Re-sampling for Depth Frames

SURREY Multi-view Depth Map Enhancement via Adaptive Median Filtering

Multi-dimensional median filter is applied on multi-view depth maps

- ✓ Increased consistency along time axis within same view
- ✓ Increased inter-view depth coherence
- \checkmark Improved coding and rendering performance

UNIVERSITY OF Multi-view Depth Map Enhancement SURREY via Adaptive Median Filtering

Multi-view Depth Map Enhancement via Adaptive Median Filtering

- Pixel values indicate a relative distance between objects and a camera.
- Pixel values change if objects move in depth direction.

Prof. Ahmet Kondoz

SURREY

UNIVERSITY OF Comparison of Motion-Predicted SURREY Signals

Predicted signal from 2DBM

Predicted signal from 3D-BM

SURREY Modelling of the perceived depth sensitivity in 3D video

- Humans can not usually perceive sufficiently small depth changes in a scene
- Experimentally derived a Just Noticeable Difference in Depth (JNDD) model to apply to a stereoscopic 3D video display system

Average of unnoticed depth level difference at various depth levels

Depth map pre-processing SURREY based on the JNDD model

(a) 'Orbi' Original unprocessed depth map

(b) pre-processed with the method based on JNDD Model

- depth map sequences are pre-processed to suppress the depth details that are not perceivable by the viewers
- This will minimise the irregularities in the rendering process that arise due to optical noise
- Bit rate for depth map coding can be reduced up to 70% (sequence dependent)

Results of depth image based rendering (DIBR)

Ballet

Breakdancers

- Y-axis = Average PSNR of rendered Left and Right views with the depth map
- X-axis = Bit rate required to encode depth map in kbps

Audio Processing

Narrow B	and AMR (@8	kHz) ۱	Vide Band AMR (@16kHz
Mode	Bitrate (kb/s)	Channel	Bitrate (kb/s)
AMR_12.20	12.20	FR	23.85
AMR_10.20	10.20	FR	23.05
AMR_7.95	7.95	FR/HR	19.85
AMR_7.40	7.40	FR/HR	18.25
AMR_6.70	6.70	FR/HR	15.85
AMR_5.90	5.90	FR/HR	14.25
AMR_5.15	5.15	FR/HR	12.65
AMR_4.75	4.75	FR/HR	8.85
			6.60
AMR_SID	1.80	FR/HR	

AMR WB+ 5.2-48kb/s @ 44.1kHz

SURREY OF AMR Performance in Mobile Channels

- AMR-NB(0.3-3.4 kHz) samples at 8kHz
- AMR-WB(0.3-7.4 kHz) sampled at 16kHz
- AMR-WB+(0.3-20 kHz) samples at 44.1 kHz

Technology	Description	Example	
Spatial Audio Coding	Spatial parameters are extracted from multichannel audio signals and then transmitted as side information along with mono or stereo downmixed signals	MP3 Surround, MPEG Surround	
Spatial Audio Object Coding	Audio scene is represented by several audio object rather than in multichannel audio signals. Spatial parameters are then extracted from object signals and transmitted along with mono or stereo downmixed signals	MPEG-4 SAOC	

Typical rates 48-256 kb/s

Spatial Audio and Spatial Audio UNIVERSITY OF **Object Coding**

Prof. Ahmet Kondoz

SURREY

SURREY Spatial Audio Object Coding

- Listen to each player separately
- Make an instrument quieter or louder
- Adaptive 3D reproduction independent of the rendering system

Content Adaptation

Content Adaptation Concept

- Growing heterogeneity in mobile media
 - Device capabilities
 - Access network characteristics
 - Content representation formats
 - Natural environment of users
 - User preferences
 - • •

Content adaptation is the process of transforming a media stream to another media stream to meet diverse resource constraints and user preferences while optimising the overall usability of the multimedia content

3D Content Adaptation Specifics for Mobile Applications

Mobile device specific adaptations

- Small display sizes
- Lightweight Limited processing capability

Mobile/wireless channel specific adaptations

- Narrow bandwidth
- Error prone channels

Adaptation options

- Depth /colour-texture spatial, temporal, quality scaling
- Illumination options
- Conversion of 3D content to 2D
- View dropping during multi-view content access
- Cropping and scaling
- Error robustness provision
- Prioritised levels for scalable layers in 3D content

Adaptation via ROI Cropping & Scaling of Non-Scalable Video for Mobile Devices

- Reducing the spatial resolution is a straightforward mechanism to adapt high-resolution (e.g., HD) video to mobile devices fitted with small and low-resolution displays
- Not an ideal adaptation method for videos with important attention areas
- Hence, cropping of video, so that enlarged attention area can be viewed on the small display, is a better adaptation solution
- What is the point of transmitting the whole picture should this be done at source? Feed back – delay etc.

• An example set of subjective assessment results for the Football sequence:

Error Resilience Adaptation for Wireless Communications (802.11e WLAN)

Simple Prioritised

- Foreground
 - Tx with Video Access Class
- Background+depth
 - Tx with Best Effort Class

Quality Based Prioritised

- Estimate quality based on channel PLR
 - Use quality estimate to allocate video packets to different traffic classes

Other Content Adaptations...

- Select the best temporal, spatial and quality options based on a generic utility function
- 3D content adaptation using video/audio attention models
- Audio assisted video adaptation and vice versa

3D Content Rendering

Screen size and processing power on the Mobiles

- Un-controlled Environment
- Variation of the Content Quality due to
 - Channel Noise
 - Bandwidth Variations

3D- Mobiles

Nokia

The latest Sharp 3.4" parallax barrier 3D touch screen LCD

Nintendo to launch 3D portable game console

Binaural Rendering Using Headphone (C. Faller, Spatial Audio, 2005)

Multi loudpseaker using Wave Field Synthesis (WFS)

Multi Loudspeaker using Panning Techniques such as VBAP and Ambisonics

(V. Pulkki and M. Karjalainen, 2008)

Standard multichannel audio reproduction such as 5.1, 7.1

(www.microsoft.com/windows/windowsmedia/howto/ articles/surroundsoundcodecs.aspx)

SURREY Directional Audio Synthesis

Unwanted sounds can be filtered out based on their directions using a spatial filter:

Fig.: Two spatial filter examples based on von Mises functions for suppression of sounds at 50° and 200° with a beamwidth of 40° (red) and at 120° and 270° with different suppression levels with a beamwidth of 70° (blue).

Quality of Experience

From QoS to QoE

We need:

'QoE models that will allow automatic system configuration and optimization for the end-toend multimedia (3D) delivery chain, which will **enhance the expectations** of the users by:

Enabling the best possible sensation, perception and emotion for **each task**'

Examples: Conference call, on-line work/business, entertainment, socialisation ...

Audio and Video importance in the content (horror movie, sports)

SURREY Perceptual Rate Control...

$$VQM = [VQM_{Left} + VQM_{Right}]/2$$

- Problem has been defined using
 - Perceptual quality of the output video (VQM)
 - Target bit rate
 - Actual encoded bit rate

Indicative Results...

Room sequence

Orbi sequence

Major QoE Challenges...

- The QoE concept represents the ultimate performance measure for the end-to end experience by closing the loop which includes the traditional QoS network management mechanisms
- Automated translation of endusers' QoE into objective performance measures, by identifying KPIs of different applications
- Dynamically optimised the whole delivery chain to maximise QoE

SURREY 3Q concept: QoE, QoB, QoS

The interaction of QoS, QoE and QoB in 3D Networked Media Systems

Disparity Distortion Model

M2- distortion of the consistency of the perceived depth of the content

in the depth planes

M3- structural error of the depth map

Performance of the proposed model: tested according to ITU-Recommendations (ITU-R BT.1438)

Cc=correlation coefficient, RMSE= root mean squared error, SSE = sum of squared error

Objective Quality Medal	Overall depth perception		
Objective Quality Model	CC	RMSE	SSE
Average PSNR of the Rendered Left and Right views	0.7788	0.0737	0.0579
Average SSIM of the Rendered Left and Right views	0.8065	0.0674	0.0547
Average VQM of the Rendered Left and Right views	0.7753 0.0739 0		0.0603
Proposed Model	0.8708	0.0328	0.0382

Normalized: CC=1, RMSE=0 and SSE=0 perfect correlation CC=0, RMSE=1 and SSE=1 worst correlation

Overall 3D Video Quality

3D Video Quality Results

Objective	Overall 3D Quality				
Quality Model	СС	RMSE	SSE		
Average PSNR of the Rendered Left and Right views	0.7061	0.1363	0.1091		
Average SSIM of the Rendered Left and Right views	0.7387	0.0949	0.0887		
Average VQM of the Rendered Left and Right views	0.8092	0.0570	0.0501		
Proposed Model	0.8441	0.0347	0.0328		

3D audio-visual QoE model

Final Comments...

Content processing forms a very important part of the current networks and will gain even more importance in the future as User's will choose their applications (push+pull)

Inclusion of all aspects of content from capture to consumption is a must for the current and future network planners

Thank you for listening!